随着科技的快速发展,近几年人工智能(AI,Artificial Intelligence)掀起了一阵阵新浪潮。人类从未停止过对人工智能的预想,从1950年图灵发表论文预言创造智能机器人的可能性开始,人类就在人工智能的道路上越走越远。随着计算机性能的提升,人工智能技术将会广泛运用于各行各业,人工智能产品终将会由各种预想慢慢变成现实。

我们逐步经历了PC互联网时代、移动互联网时代,人工智能时代。传统互联网对人类的主要贡献是通过优化和创造信息存储和传递的方式重新组合各种生产要素(即重构了已有商业模式),人工智能的主要贡献是升级生产要素,进而推动产业升级。

来到人工智能时代,传统互联网产品将面临巨大的挑战,那么如何提升自己转型成为AI产品经理呢?

一、了解AI,寻找切入点

1. AI是什么

AI就是利用技术对人的能力和意识进行模仿和超越。

AI产品经理不仅需要像传统产品经理一样设计产品交互和逻辑流程,还需要改变传统产品流程上能用到人工智能技术的能力范围,实现让技术为产品赋能,为企业赋能。AI技术已经广泛运用于多个领域,如自动驾驶、机器人、电商、语音与图像识别、人机交互、智能控制、医疗诊断等。

人工智能产品没有固定的形态,只是一种将传统产品和服务赋能的一种手段,有了人工智能技术,将会使产品逻辑化繁为简,降低用户学习成本,提升产业的商业价值。

无人驾驶汽车通过运用传感器、高精度地图、高级辅助驾驶系统和车联网等关键技术实现无人驾驶,与传统汽车相比,用户不再需要全程关注路面情况手动驾驶而是仅仅需要输入目的地即可。

语音交互产品与传统的鼠标、键盘、触摸屏等交互方式不同,用户通过与产品进行语音对话即可完成唤醒、查询、订购等一系列复杂的人机语音交互操作。

人脸识别身份验证与传统登录需要输入账号、密码、验证码不同,它只需要用户在摄像头前露个脸即可实现快速登录。

2. AI的三要素有哪些

人工智能在图像识别、语音识别、自然语言处理、信息检索、机器翻译、社交网络过滤、精准推荐、智能医疗等方便的广泛应用离不开深度学习。

深度学习在每个应用场景中的落地离不开“算法”“算力”“数据”三要素:

1)AI第一个核心要素:算力

算力就是支撑需求实现的系统架构支撑,可以简单理解为计算能力。评估某个需求的算力需要着重从硬软件多方面去衡量。算力不是瓶颈,因为现在有云计算,但是有成本的考虑因素在里面,算力的成本在整个AI模型中占到了10-20%。

2)AI第二个核心要素:算法

AI常用的算法有:自然语言生成算法(NLG)、语音识别算法、虚拟现实算法、决策管理技术、深度学习、生物特征识别技术、识别图谱、机器学习……

虽然算法在AI行业里大部分是开源的,想拿到什么样的资源都可以拿到,深度学习、多层次神经网络算法目前也都已经比较成熟,但是AI产品经理在做产品设计时,还需要结合公司算法研发能力避免提出过于超前和落后的产品功能。

3)AI第三个核心要素:数据

在机器学习领域,好的数据通常比算法更重要,有些时候没有数据的话,AI模型是不可能成熟落地的。更有算法工程师扬言“数据秒杀一切算法”。既然数据如此重要,产品经理在设计之初就得考虑数据从哪来、数量质量怎么保证、数据治理的工作怎么开展等问题。

3. 寻找适合自己的切入点

应用AI的公司主要有三类:纯AI公司、AI+公司、+AI公司

1)纯AI公司

纯AI公司是做AI的基础层,主要做芯片、云计算、框架等方向。

这类公司从人工智能的底层平台需求出发,构建完整的从人工智能计算平台的硬件单元研发、数据治理、AI建模再到平台部署的人工智能的“基础设施”。这类公司布局一些PaaS形态的基础计算平台和算法平台供其他公司直接调用,减少其他公司的人工智能研发成本和周期。

2)AI+公司

AI+公司是做AI的技术层,主要研究通用技术,如图像识别、语音识别、文本识别等。

3)+AI公司

+AI公司是做“场景行业+AI”,如智能医疗、智能安防等。

传统产品经理需要根据自己擅长的领域和兴趣去有针对性的强化学习,将自己擅长的点发挥到最大。

如果你擅长场景,那么你着重学习一下算法方面,你在应用层+AI企业中,将自己负责的产品赋能上人工智能将实现更大的价值。

如果你是技术出生,机器算法、机器视觉等都懂,则适合去技术层公司或基础层公司发展自己的才能。

除上所述,还有像BAT这些公司,在基础层、技术层、应用层都有企业布局。

二、转变思维模式

传统产品经理的工作协同方式是优化和创造信息存储和传递的方式重新组合各种生产要素。

比如:滴滴打车,传统思维模式是将古老的路边招手即停的打车方式合理的规划让信息准确传递,使用户和司机双方都能进行信息互通,司机可以接自己想接的单子,乘客可以选择自己要打的车型。

人工智能产品经理的工作协同方式是在传统产品经理的基础上实现变革与创新,升级各种生产要素,而不仅仅是生产要素之间重新组合。比如:无人驾驶,不管是半智能、条件智能、高度智能、完全智能,均改变了“司机”这一生产要素,让必须“人类驾驶员全程监控行驶环境”升级为“汽车自动智能监控驾驶环境”。

故要想成为人工智能产品经理并在产品管理工作中变得优秀,就应该改变自己的思维模式。

传统产品经理会将很大一部分经历分配到功能逻辑、流程推敲、页面设计等等事情上,而人工智能产品经理不仅要懂得传统产品经理的功能梳理和交互设计,更需要懂得硬件运算架构、算法模型、数据分析、有效训练数据等综合能力。

所以,人工智能产品经理应该具备系统性思维,把问题放在整个系统中综合分析,权衡利弊,得到最佳解决方案。